Microearthquake Survey at the Buranga Geothermal Prospect, Western Uganda

Norbert Ochmann³, Michael Lindenfeld³, Paula Babirye² & Christopher Stadtler³

² Uganda Department of Geological Survey and Mines (DGSM) ³ Federal Institute for Geosciences and Natural Resources (BGR)

Information about the Buranga hot springs

- Strong historical earthquakes have changed the activity and position of the Buranga hot springs
 → geothermal activity is related to tectonic activity (active fault = flow path for thermal water)
- No geological surface indications for volcanic activity, no intrusive dikes (from aeromagnetic data) around Buranga → geochemistry indicates magmatic intrusion (heat source)
- Measured soil temperatures show a high temperature anomaly, which extends from the hot springs towards the Ruwenzori Massif

Objective for Geophysics:

Delineation of underground magmatic intrusion is needed to recommend locations for geothermal exploration boreholes.

Attempt with active ground geophysics: DC-Soundings, TEM and Gravity

Results of this survey were insufficient to delineate a geothermal reservoir for 2 reasons:

The bad/impossible accessibility of the terrain prevented to cover the survey area adequately with measurements/data.

Low resistivities close to the surface were detected almost everywhere leading to insufficient distinction of results between geothermal active and non-active areas.

February 2006

March 2006

located earthquakes in February and March 2006:

- total: 760 events
- average: 13 per day

How can Seismology help to delineate an assumed magmatic Intrusion?

A Data Subset of 602 events was used for inversion 6616 rays 3336 P-rays 3280 S-rays 10 stations from February to May 2006 having errors in location <= 5 km and RMS of residual <= 0.1 sec.

602 events

Rays coverage

Anomalies of P and S velocities in different depth levels.

602 events

Results

Anomalies of P and S velocities in different depth levels.

Results of the inversion in vertical section CD, P-velocity model. Events are shown if the distance from the section is not larger then 10 km.

Thank you

Olkaria geothermal field in Hells Gate National Park, Kenya

Resistivity methods

Results of resistivity methods (TEM, Schlumbergersoundings (VES) and dipole/dipole-mapping)

Rwenzori - Seismicity

